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Product Integration Over Infinite Intervals 
I. Rules Based on the Zeros of Hermite Polynomials 

By William E. Smith, Ian H. Sloan and Alex H. Opie 

Abstract. The paper discusses both theoretical properties and practical implementation of 
product integration rules of the form 

n 
J k(x)f(x) dx wnlj(XnJ 

_o i=l 

where f is continuous, k is absolutely integrable, the nodes {Xn,} are roots of the Hermite 
polynomials Hn(x), and the weights {wn,} are chosen so that the rule is exact if f is any 
polynomial of degree < n. Convergence of the rule to the exact integral as n - oo is proved 
for a wide class of functions f and k (including singular or oscillatory functions k), and rates 
of convergence are estimated. The rules are shown to have the property of asymptotic 
positivity, and as a consequence exhibit good numerical stability. Numerical calculations for 
some practical cases are presented, which show the method to be computationally effective for 
integrands (including highly oscillatory ones) that decay suitably at infinity. Applications of 
the method to integration over [ 0, oo) are also discussed. 

1. Introduction. In this paper we propose a product-integration method, in the 
sense of [2], [5], [6], [18]-[22], [25], for evaluating an integral of the form 

P00 

(1.1) I(k, f) f k(x)f(x) dx, 

where f is a smooth function and k is a Lebesgue integrable function. Additional 
conditions on k and f will be imposed later. 

The method will also handle integrals over semi-infinite intervals of the analogous 
form 

00 

I+ (k, f) f k(x)f(x) dx, 

since there exist simple transformations that convert integrals of this form into the 
form (1.1)-see Section 6 for details. 

The product-integration method is based on approximating the smooth function f 
by a polynomial. More precisely, the integral I( k, f ) is approximated by 

( 1 .2) In(k f )=| k (x) )Lf(x ) dx , 
-oo 
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where Lf is the unique polynomial of degree < n - 1 that coincides with f at n 
preassigned points xnD1... ,xnn. It is well known, at least for a finite interval, that 
polynomial interpolation is an uncertain matter unless the interpolation points xni 
are well chosen. In the present work we take the n points to be the zeros of the nth 
degree Hermite polynomial Hn(x). With that choice of points we shall show that a 
very satisfactory convergence theory results and also that very satisfactory rates of 
convergence can be obtained for suitable choices of k and f. 

Since the fundamental notion is that of approximation by a polynomial, we might 
expect that for rapid convergencef needs to be smooth, and not grow too rapidly at 
infinity; and that k should decay at infinity, in order to suppress the growth of the 
approximating polynomial. More precise growth conditions will be stated later. 

A more practical expression for In(k, f ) may be obtained by substituting into 
(1.2) the Lagrange form of the interpolating polynomial Lf, to obtain an expression 
of the form 

n 

(1.3) In(k, f ) = wni(k)f(xni). 
i-= 

An explicit expression for the weights wni(k) is given in Section 5. The resulting 
quadrature rule is clearly exact if f is any polynomial of degree < n, and in fact that 
property gives an alternative characterization of the product-integration rule. 

If k(x) = eX, the rule reduces to the classical Gauss-Hermite quadrature rule. In 
this case the rule is exact if f is any polynomial of degree < 2n, and the weights wn1 
are all positive. In other cases the rule is not a Gaussian rule, because the points xni 
remain fixed as k varies. Note that the rule, unlike a Gaussian rule, places no 
restrictions on the sign of k(x), and in fact some of the most interesting applications 
are those in which k is highly oscillatory. (See Section 7 for numerical examples.) In 
general the weights, unlike Gaussian weights, are not necessarily positive. Neverthe- 
less they turn out to be extremely well behaved: if k is positive over a subinterval 
and satisfies a specified integrability condition, then the weights corresponding to 
that subinterval are 'asymptotically positive' in the sense in [21]. The precise 
condition is stated in Section 2. Also stated there are general theorems on the 
convergence and rate of convergence of In(k, f ) to I(k, f ). 

Gabutti [9] and Patterson [16] have evaluated certain infinite oscillatory integrals 
by an extension of the method proposed by Bakhvalov and Vasil'eva [2]. In this 
method the function f is first approximated by the partial sum of an appropriate 
orthogonal polynomial series, and then the coefficients in that sum are evaluated 
approximately by Gaussian quadrature. As was recognized by Patterson [16], this 
method can be reinterpreted as an interpolatory product integration method, the 
points xni being the nodes of the Gaussian quadrature. However, this approach does 
not appear to lead readily to full theories of convergence, rates of convergence or 
numerical stability. These are obtained in the present work by extending the 
methods used in some recent studies of product integration on the finite interval 
[19], [21], [22]. 

A quite different method for handling oscillatory integrals over semi-infinite 
intervals is the acceleration method, which has been reviewed and extended by 
Blakemore, Evans and Hyslop [3]. That method is based on the use of accurate 
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quadrature rules to integrate between successive zeros, combined with powerful 
acceleration techniques to speed the convergence as the upper limit is taken to 
infinity. 

Finally, we mention that there exists a quite different product-integration ap- 
proach from the one studied in this paper, namely to transform the integral to one 
over a finite interval, and then to apply a polynomial product-integration rule to the 
finite interval. Transformations of this kind are discussed in [5]. The rule so obtained 
can be viewed as a product-integration rule for the original interval, based not on 
polynomials but instead on the functions obtained from the polynomials by the 
transformation from the finite to the infinite interval. A method of this kind has 
been used very successfully by Lehman, Parke and Maximon [12] for a class of 
semi-infinite intervals involving spherical Bessel functions; their method for the 
finite interval is that of Sloan and Smith [19], [20]. The success of such an approach 
rests, of course, on the transformed function f being a smooth function over the 
finite interval, and hence easily approximated by a polynomial. If that is the case, 
then this approach can be expected to work very well; and for cases in which k(x) 
does not decay rapidly at infinity it is likely to be preferable to the method studied 
in this paper. But if k(x) does decay rapidly, then the present approach of using 
polynomials over the infinite interval seems more straightforward. 

The principal theoretical results of the paper are stated and discussed in Section 2 
and proved in succeeding sections. The practical construction of the rule for various 
classes of function k(x) is taken up in Section 5. Integrals on [ 0, xc) are discussed in 
Section 6. Some numerical results are given in Section 7. 

2. Principal Theoretical Results. The first result is the main theoretical result of the 
paper. It parallels known results for finite intervals [21], and is proved in Section 3. 

THEOREM 1. Let k satisfy 

(2.1) J Ik(x)e X2/2 r dx <o 
-w0 

for some p > 1, and let f be a function which is Riemann integrable on every finite 
interval, and which satisfies 

x 2/2 

(2.2) if(x) I< c e 

(1 ? X2)'/'2 

for some constant c. Then kf E LI(-oc, oc), 
n 0 

(2.3) lim w, wni(k)f(xni) =J k(x)f(x) dx, 
oi=l -00 

and 
n 0 

(2.4) lim wni(k) If(xni) = Ik(x) If(x)dx. 
n wi=1 

Remark. The theorem asserts not only the convergence of the quadrature rule 
itself, under suitable conditions on k and f, but also the convergence of a companion 
rule obtained by replacing all weights by their absolute values. The main significance 
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of the companion rule, discussed for the case of a finite interval in [21], is that it 
ensures numerical stability. Note that if f is the characteristic function of an interval 
[a, b], then, for all k satisfying the conditions of the theorem, we have from (2.4) 

lim 2 I wni(k) bI| k(x) I dx, 
noo 

Xni[a,b] a 

and also from (2.3) the same result with the absolute value signs removed. These two 
conditions, holding as they do for an arbitrary interval, force the weights to reflect 
very accurately the local behavior of k(x). For example, if k is nonnegative over 
[a, b], then we obtain from the two conditions 

lim w [nw,s(k) I-wnl(k)] = 0, 
n-oo Xni[a, b] 

from which it follows that the sum of all negative weights corresponding to the 
interval [a, b] can be made arbitrarily small by taking n sufficiently large-in other 
words, the weights corresponding to the interval [a, b] are 'asymptotically positive'. 

The next result gives an error bound for the quadrature rule (1.3) and generalizes 
an analogous result for the finite interval [19, Theorem 4]. The bound is computable, 
at least in principle. 

The bound depends, as we would expect, on how well f can be approximated by a 
polynomial of degree < n. However, on an infinite interval there are many different 
ways in which the quality of the approximation might reasonably be measured. We 
shall use weighted uniform approximation with respect to a function g, where g is 
positive and continuous on the real line and has the property that p(x)/g(x) -O 0 as 
I x I- oc for every polynomial p, but is otherwise unspecified. Thus we define the 
error of approximation by 

En( f; g) = inf II(f f- p)lg 11 
p E Pn 

where Pn is the set of polynomials of degree < n, and the norm is the supremum 
norm, 

HulK supIu(x). 
XFR 

THEOREM 2. Let f be a continuous function satisfying 

If(x) I< cg(x), 

where g has the properties stated above and c is a constant, and let k satisfy 
00 

f k(x) I g(x) dx < 00. 
-00 

Then 

I(k, -n f fI <[ k(x) I g(x) dx I wni(k) I 9(Xn, En-A(f; g). 

The proof, which is elementary, is given in Section 4. 
Theorem 2 can be applied even if k(x) does not satisfy the conditions in Theorem 

L. In that case the sum 2 I wni(k) I g(xni) may grow without bound as n increases, but 
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a satisfactory rate of convergence might still be achieved if En_-1(f; g) approaches 
zero fast enough. (However, the numerical stability will be poor if the sum becomes 
too large.) 

In the present work we are most interested in the case in which k(x) satisfies the 
conditions of Theorem 1. For this case we set g = h, where 

ex2/2 
(2.5) h(x) = 

(1 + X2)l/'2 

and deduce the following corollary. 

COROLLARY 1. If f is a continuous function satisfring I f(x) I< ch(x), and if k 
satisfies the condition in Theorem 1, then 

I(k, f )In(k, f ) 2 <[2| | k(x) I h(x) dx + en(k) Enjlf; h)9 

where en(k) -O 0 as n - . 

The quantity En(k) in the corollary is given by 

n 

En(k) = w w(k) I h(xni) |fk(x) I h(x) dx. 
*=1-o 

Its convergence to zero follows from Theorem 1 with f set equal to h. 
Asymptotically, the error bound given by Corollary 1 is proportional to En -( f; h). 

Freud [7, Theorem 3.9] has given bounds on this quantity in terms of a generalized 
modulus of continuity of f. We refer to Freud's paper for details, and content 
ourselves here with a simply-stated weaker result that follows from Freud's result: if 
f is r times continuously differentiable, and if 

(2.6) If(r)(x) 1< ch(x), 

where c is a constant, then 

(2.7) En(f; h) S Cn-r/2 

where C is a constant for given r and f. 
In rough terms there are two factors that influence the rate at which En(f; h) 

approaches zero, namely the smoothness of f and its rate of growth; the most 
favorable situation being that of high smoothness and slow growth. If, for example, 
f(x) = ex 2/2(l + x2)-3/2, then the condition (2.6) is satisfied with r = 2, and it then 
follows from (2.7) that E( f; h) 0(1/n). As a second example, if f(x) = ex2/4, 

then (2.6) is satisfied with r taken to be any natural number. Finally, if f(x) = h(x) 
= ex2/2(l + x2)-1/2, so thatf has the maximum rate of growth allowed by Theorem 
1, then Corollary 1 gives no information at all about the rate of convergence, since it 
can very easily be seen that En(h; h) > 1. Even in this case we are assured by 
Theorem 1 that the quadrature rule converges to the exact result, but the rate of 
convergence may be very slow. 
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3. Proof of Theorem 1. If k and f satisfy the stated conditions, then it follows from 
the Holder inequality that kf E LI(- x., ox), since 

f | k(x)f(x) I dx = f k(x)ex2/2 I If(x)ex2/2 dx 
-00 -00 

I '/pr ll Iq 
s[I Ik(x)ex /2 dx] jf If(x)ex2/2I"dx] 

sc[f lk(x)ex2/2I dx] [f(i + x2)~/2dx]/, 

where l/q 1 - 1/p. The last integral is finite because q > 1, and the first is finite 
by assumption. 

The proof of the main results is based on the following mean convergence result of 
Nevai [14, Theorem 1] for polynomial interpolation at the zeros of H (x). 

THEOREM. Let f E C(R) and be such that 

(3.1) lim f(x)xe -x2/2=o 
jxj- 0 

Then, for every number q satisfying 1 < q < oo, we have 

im i L(x) - f(x) |qe-qx2/2 dx 0. 
n - oO - 00 

The first convergence result in Theorem 1 can be obtained for a more restricted 
class of function f by a simple application of Nevai's theorem, as follows. 

LEMMA 1. Let k satisfy the condition in Theorem 1, and let f be continuous and satisfy 
(3.1). Then 

lim In(k, f )=I(k,5 f) 
nf -- 0 

Proof. From the definitions we have 

(3.2) II(k,f) -In(k5f)I f k(x)[f(x) -Lf(x)] dx 
-00 

II/pr 0 0l/ 
? [fIk k(x)ex /2 IPdx [ I f(x)-Lf(x) Iex2/2 dx] 

where we have again used the Holder inequality, with q p/( p - 1) > 1. The 
lemma now follows from Nevai's theorem. I 

To prove the rest of Theorem 1, Nevai's theorem needs to be used in a less trivial 
way. First, we need some notation. For 1 < p < oo let 11 * 11 () and II II (-) denote the 
norms defined by 

Ilufllp+)4f[| I u(x)e?x2/2 r dx] 
i/p 

and let Lp+ ) denote the corresponding Banach spaces. Further, let Ch,O denote the 
space of functionsf E C(R) that also satisfy 

lim f(x) - 0) 
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where h is given by (2.5), and define the norm il i h as 

(3.3) 11 f Ilh =II fl/h I 00. 

Then ChO0 is a Banach space under this norm. With this notation Nevai's theorem 
states that for 1 < q < xo we have 

lim 11 Lf -f IIHq = O 
n 0o0 

for all f in Cho0, from which it follows trivially that I Lf I) I) 111 f11 ) < Xo, and 
hence 

(3.4) sup 11 Lf 11 ( o) 
n 

for allf E Ch0. 

The following lemma is the cornerstone of the remainder of the proof of Theo- 
rem 1. 

LEMMA 2. If 1 < p < cc, then for all k E L(+) 

n 

w wni (k) I h(Xn,,) ? Cp 1k II(+) 

where 

n fe ch,0 
Ilfl h 

with 1/p + l/q 1. 

Proof. It is easily verified that 

nw (kIh(En -I >wn, (k)f(XnJ) f0k(x)Lj(x) 
dx 

wni(k)_h(Xn,)= sup - 
i= = sup 

f e Ch,o 
1 f IIh f EECh,o 

f 
11th 

< 
sei lk < Cp ll k Lpp 

where Cp is given by (3.5). That Cp is a finite number follows from (3.4) by an 
application of the uniform boundedness theorem, because Ch,0 is a Banach 
space. u 

Now suppose that p > 1 is a fixed number for which the condition (2.1) is 
satisfied, and that f satisfies the conditions stated in the theorem. We seek first to 
prove (2.4), the convergence property for the companion rule. The argument is 
analogous to one used in [21]. 

Our strategy will be to approximate the function k by another function k*, which 
satisfies (2.1), but which is constructed in a special way, to be described later. By 
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elementary inequalities we then have 

(3.6) |wnif(k) (Xni) k (x) I f(x) dx 

00 n 

_ jj k*(x) I -I k(x) jjlf(x) I dx ? 11 wni(k) I -I wnl(k*) fljf(xn1) I 
-00 1 

+ I w i(k*) If(xn,) I f k*(x) I f(x) dx . 

Now 

w,1 (k) I wni (k*) wn I| ,(k) - wnI(k*) w1 (k - k*) 

since wj7(k) is linear in k; see Section 5. Moreover, by the assumption on f in the 
theorem, the norml I f I h defined by (3.3) is finite, and we can write, for all x e R, 

If(x)j? IlfIIhh(x). 

Hence, using Lemma 2, the second term on the right-hand side of (3.6) satisfies 
n n 

E II wn, (k) I -I wn, (k*) 11AXnixn) |s< Ilf ll h I wnl(k -k*) I h(Xnl ) 
i=l 1= I 

s IfIIC t 1 Ilk - k*11 (+). 

The first term on the right-hand side of (3.6) satisfies 

I II k*(x) I k(x) IIIf(x) I dx s I fIflh_ I k*(x) -k(x) h(x) dx 
-00 -X 

II fIh It h 1H)hk* - kIIV - q ~~~p 
again using the H6lder inequality. Note that 

hIhIy [o(I + X2)-q/2dX I llq< , II h llI(-) = J( 2 -/ x < oo, 

because q > 1. 
Thus the first two terms of (3.6) are bounded by constant multiples of II k* k - I 

Now we write 

(3.7) k(x) = e-x2K(x), k*(x) = e-x2K*(x), 
so that 

1Ik*-k11(+) =- IIK* - KIIH. 

It follows from the assumption (2.1) that K E L(-). Let us now require that K* be a 
polynomial. Since the polynomials are dense in the space L(- (see [13, Lemma 2]), 
we can choose K* so that the first two terms on the right-hand side of (3.6) are each 
less than c, where - > 0 is a given arbitrary number. 

It only remains to show that, having thus chosen K*, the third term on the 
right-hand side of (3.6) is less than - for all n sufficiently large. Since K* is a 
polynomial, of degree say m, it is shown in Section 5 (see (5.6)) that for n > m we 
have 

wni(k*) = niK*(Xni) 
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where /Anj is the Gauss-Hermite quadrature weight that corresponds to the point xni; 

and hence 
n '00 

| wn(k*) I f(xni - I k*(x) I f(x) dx 

n ,00 2 

= z gtlni I K*(xni) If(xni)- e-x I K*(x) If(x) dx 

which is the error in the Gauss-Hermite quadrature rule for the function I K*(x) I 
Xf(x). The latter function is Riemann integrable over each finite subinterval of R 
and satisfies 

x2 

IK*(x)f(x) IA ex 

(I +I XI)2~ 
where A is a constant, which is a sufficient condition for convergence of the 
Gauss-Hermite rule [24, p. 559]. Hence the last term on the right side of (3.6) can be 
made less than e by taking n sufficiently large, and so the proof of the companion 
rule (2.4) is complete. 

The convergence property (2.3), for the conditions stated in the theorem, can be 
proved in an almost identical fashion: all that is required is the omission of some of 
the absolute value signs from the argument used to prove (2.4). D 

4. Proof of Theorem 2. Let pn-I be an arbitrary polynomial of degree < n -1. 
Then, because the rule In(k, f ) is exact if f is such a polynomial, it follows that 

I I( k,f) )-In( k,f ) I =-l I(k,f f-Pn-, l)In(ktsfJ-Pn- l O 

f(X) - Pn- I(X) df(Xni)- | k(x)g(x) dx- 2 wni(k)g(Xni) 
g(xn) J ~~~g(x) 

[00 n 

I k( x) I g(x ) dx 
+ I |wni( k) I g(XnJ )] ll Pn- I 9lg 

-o,o i=l 

Because this holds for any polynomial of degree < n - 1, the desired result follows 
on taking pn- 1 to be the polynomial of best approximation to f in the sense of the 
norm 11 - 11 9. D 

5. Practical Construction of the Rules. The construction is a special case of that 
given by [5], [8], [15] for product integration based on the zeros of orthogonal 
polynomials. 

Let Hn be the Hermite polynomial of degree n normalized by 

f e-x2H,(x)Hm(x) dx = hi86m = 2'1!7TI1281m, 
-00 

and let {x)n)I} and In i, be the points and weights in the Gauss-Hermite 
quadrature formula 

f e-x2g(x) dx t g(x ). 
-00 2 

n 
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Then, because the Gauss-Hermite rule is exact if g is a polynomial of degree < 2n, it 
follows that the Hermite polynomials also satisfy the discrete orthogonality relation 

n 

n MniHi(Xni)Hm(Xni)= hIs1mg 
i -~ I 

provided that / + m < 2n. 
If Lnf is the unique polynomial of degree < n that coincides withf at xn1.* 

then it follows from the discrete orthogonality relation that 

n-I 

Lf(x) = nHl(x), 
1=0 

where 

1n 
(5.1) b (S .1 ) b~~~nl = h AniHl (Xni )f( Xn ) - 

It then follows from (1.2) that 
n-I 

(5.2) In(k, f) 2 albn, 
1=0 

where 

-00 

or alternatively 
n 

54 In(k9 f)= 2 wnj(k)AXn,) 
i= 1 

where 

n-Ia 

(5.5) Wn i(k) =1-tni 2 hIHI(Xni)- 

Note that a, may be written as 

a= e-X K(x)H,(x) dx, 
-0'0 

where K is defined by (3.7). Hence we may write 

wn1(k) =nA- _I(Xn,), 

where 

S4~~1(x)n-Ia S,K l(x) =2 'lH,(x), 

the nth partial sum of the Fourier-Hermite series corresponding to the function K. 
In particular, if K is a polynomial of degree m, then for n > m we have S4K 1(X) 

K(x), and hence for this special case 

(5T.6) wni ( k ) = pni K(X ni ) 

(This property is used in the proof of Theorem 1.) 
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In practice Ij(k, f ) may be evaluated by either (5.2) or (5.4), according to taste. In 
the calculations of Section 7 we have in fact used the latter, with the Clenshaw 
recurrence method [4] used to evaluate the sum in (5.5). 

The amount of computation may be reduced in special cases by exploiting 
symmetries of f or k. First, if f is either even or odd, then one need calculate f(x,1,) 
only for nonnegative points x,ni because the points xn i are symmetric about the 
origin. Second, if k is even, then a, = 0 for odd values of 1, and the weights wni(k), 
like the Gauss-Hermite weights jn, are equal for a symmetric pair of points. Finally, 
if k is odd, then a- = 0 for even values of 1, and the weights for a symmetric pair of 
points differ only in sign. 

The heart of any practical product-integration calculation is the computation of 
the moments a1, = 0,1,. .., for the given function k. We conclude this section with 
suggested computational schemes for some simple yet important choices of k. For 
these examples we use readily available analytical results. For other functions k of 
practical interest, appropriate analytical techniques for calculating the moments are 
required. 

A k(x) ea2x2Cosx, a > 0, 

B k(x) = e_a2X2sin3x, a > 0. 

In the first case a, vanishes if / is odd, and in the second a, vanishes if / is even. The 
remaining values of a, are given in both cases by [10, p. 840] 

a (_1)[I/2]1V1/2e P2/4a2a11(' - a2)1/2 H 2 ( 2)'/2) 1 

[(_1)["/2]VLI/2e_P2/4f/ a4 1. 

(Note that the argument of the Hermite polynomial is imaginary if a > 1. In that 
situation either branch of (1 - a 2)1/2 may be taken.) 

C k(x) = e_a2x2 cos 32x2, a > 0, 

D k(x) e_a2X2 sin /32x2, a > 0. 

In both cases a= 0 if / is odd. If / is even, then by [10, p. 839] a1 is the real or 
imaginary part, respectively, of 

AZ = ST1/2 (1! (1 - a2 + i132) '/2(a2 
- 

if2) 
A,-712(1/2)! 

The complex numbers A,, or their real and imaginary parts separately, can easily be 
generated by recurrence on 1. 

E k(x) x e_a2x2 cos 32x2, a > 0, 

F k(x) =x e_a2x2sin/32x2, a>0. 

Again a, = 0 if / is odd. If / is even, then a, is the real or imaginary part, respectively, 
of 

Al= 2Z(1 ) I (22(3I * (n-i2 (a 2 - i.2)n-112-1 / 'n= _ _ __ __ _ ___n_ __ _ 
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This is obtained by substituting into (5.3) the explicit expression for the polynomial 

H,(x) (see [1, p. 775]). 

G k(x) = ea2X2(x - a)6(b - x), a 2 0. 

Here -oc < a < b < + cc, and #(x) is the step function 

O(x) = t? If x < 0, 

If a > 0, we may also allow a =- or b - + oo, since the integral for a1, 

(5.7) a fbe-a2x2H,(x) dx, 

remains well defined. 
If a = 0, then by using the relation 

(5.8) H,(x) = H?+I(x), 1 > 0, 
2(1+1) 

we obtain 

I 
2(1 + 1) [H+1(b)- 

On the other hand if a > 0 and -oo < a < b < xc, then since Ho(x) =1 we obtain 

(5.9) ao = 2 [erf(ba) - erf(aa)], 

where erf(t) is the error function. The remaining moments a1, / 2 1, may then be 
obtained by upward recurrence, as follows. First, for 1 2 2 we substitute the relation 

H1(x) = 2xH1I(x) - (21 - 2)HI2(x), 1/ 2 2, 
into (5.7) and then integrate by parts in the first term and use (5.8) to obtain the 
recurrence 

(5.10) a1 [e-a2a2H,(a) - ea bHl(b)] 

+(21-2) 2-la 12, 12 

It can be verified easily that this relation holds also for /= 1 if a is taken to be 
zero. Finally, the results for a = -o or b = + oo follow from the above results by 
taking the appropriate limits. 

Remark. The point of example G is that it allows us to evaluate 

(5.11) be -a2xA(X) dx, 

for arbitrary values of a and b, by a quadrature rule based on the one fixed set of 
points. For example, we may, if we wish, evaluate the integral from -cc to a variable 
upper limit b, i.e. find the indefinite integral. Of prime importance is the fact that for 
a2 > 2 the convergence of the quadrature rule approximating (5.1 1) is uniform with 
respect to a and b, provided f is continuous and satisfies (2.2). This follows from the 
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error bound (.), which gives 

I(k, f I(k, f) 1<[beP(a21/2)x2 dx] [ If(x, - L/f(x) qe ] 

1 1/pr~ 1llq 
0Je P('2 1/2)X2 dxj [| If(x) - Lf(x) q eqx2/2 dx] 

the right-hand side of which converges to zero as n - oo by virtue of Nevai's 
mean-convergence theorem (see Section 3) for any fixed q > 1. 

6. Semi-Infinite Intervals. Consider the integral 

(6.1) I+ (K, F) K(t)F(t) dt, 

where K is integrable and F is smooth. If F has a smooth even extension to the whole 
real line (e.g., F(t) = cos t or F(t) = (1 + t2)'), then we may write 

I+ (K, F) = 2fK(I x I)F(x) dx, 
2-00 

which is in the form (1.1) required for the product-integration method if we take 
k(x) = 'K(I x 1) and f(x) = F(x). Similarly, if F has an odd smooth extension to 
the whole real line (e.g., F(t) = sin t), then we may write 

I+ (K, F) = 2 sign(x)K(I x I)F(x) dx, 

which is again of the required form if we take k(x) = 2 sign(x)K(J x 1). In practice 
one or other of the above situations can often be achieved by a judicious manipula- 
tion of factors in the integrand. 

In all other cases we may transform the variable in (6.1) by substituting t = x2, to 
give 

I+ (K, F) = 2fxK(X2)F(x2) dx f I x I K(x2 )F(x2) dx, 

which is of the form required for the product integration method if we take, for 
example, k(x)= x K(x2) and f(x) = F(x2). An example of the use of this 
transformation is given in the following section. 

Because of the correspondence between Hermite polynomials Hm(x) and the 
Laguerre polynomials LO /2)(x2), L- 1/2)(x2) [23, Eq. (5.6.1)], the use of the present 
rule on the transformed integral can alternatively be interpreted as a product rule for 
[0, oo) using zeros of Laguerre polynomials. We do not detail this approach further 
in the present paper except to write down the corresponding form of Theorem 1. 

THEOREM Ia. Let K satisfy 

f | K(t)e1/2tl/2 Ipt-1/2 dt < x 

for some p > 1, and let F be a function on [ 0, oo) which is Riemann integrable on every 
finite interval and which satisfies 

e t/2 

F(t) < C (I + tC ) 
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for some constant C. Then KF E L1[ 0, xc), and 
n 00 

lim E Wni(K)F(tni) = K(t)F(t) dt 
nf-o0 i=j 0 

and 
n 00 

lim : I WniV(K) I F(tni) = j | K(t) I F(t) dt 
n-0oo i= I 

if the nodes {ttni for interpolatory product integration on [ 0, mc) are chosen either as 

(a) the zeros of L- l/12)(t), or 
(b) the zeros of L(lY/2)(t) supplemented by t = 0, 

and {Wni} are the corresponding weights. 

7. Numerical Examples. Numerical results for a number of examples are shown in 

Table 1. In each case other than (5b) analytical results were available to estimate 

numerical values for the integrals. (For (5b) the difference from (5a) was estimated 

by a many-point Simpson's rule.) The Gauss-Hermite weights {}ni} and nodes {xnij 

were calculated using an algorithm of Golub and Welsch [1 1], and we are grateful to 

these authors for supplying a copy of their program. To guard against roundoff 

errors the calculations were implemented in double precision FORTRAN on the 

Cyber 171 at the University of New South Wales (29 significant decimal digits). 

Example 1. 

fe x2+x sin 5x dx. 

Here we have chosen 

k(x) = eX2 sin 5x, f(x) = ex. 

Clearly, the rate of convergence is excellent, even though f(x) increases exponen- 

tially at oo. The ratio wIn If(xni)/lf I k If, shown in the final column, appears to 

be converging to 1, in conformity with Theorem 1. 

Example 2. 

00 
e-x2cos lOOx2 (4 ) dx. 

The integrand in this case is highly oscillatory. We take 

2 4 -x2 
k(x) = e-X coslOOx2, f(x) = 4 x2' 

so that the oscillatory behavior is accounted for by k. Evidently, the rate of 

convergence is much slower than in Example 1, but is still very satisfactory. The 

ratios shown in the last column are rather smaller than the limit value 1, indicating 

good numerical stability against errors in the values of f(x). 

Example 3. 

f0e- cos 100t2( t2 
dt = 2 | eX cos 100x2( 2 dx. 

Again the integrand is highly oscillatory, and we take k(x) = eX2 cos 100x2, as in 

Example 2, but now f(x) - l (I + X2)/(l - X2). In each case f is a simple rational 
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TABLE 1. Numerical examples 

Example Error Iwn, If(x,,,) 
No.mple k(x) f(x) n =fkf- Wn,f(X,J) f lkif 

1. exp(-x2)sin 5x exp(x) 4 2.0 (-3) 0.06 
f kf = 2.6293 7170 9671 587 (-3) 10 -4.8 (-7) 0.57 

IkIf= 1.45 20 -1.1(-14) 0.98 

4 - x2 
2. exp(-x2)cos lOOx2 4x2 4 6.7(-3) 0.13 

4?x2 10 3.2(-4) 0.17 

20 9.3 (-6) 0.21 
Jkf= 1.26260713(-l) 30 6.2(-7) 0.23 

f I k If = 9.5 (-1) 50 2.8 (-8) 0.26 

,~~~~~~~~~~~~~- 2 

3. exp(-x2)cos 100X2 2 2 4 2.0(-2) 0.12 
1 ?+x 10 4.3(-3) 0.19 

20 7.4 (-4) 0.24 
f kf = 6.3584 0 (-2) 30 1.9 (-4) 0.27 

fIk If = 6.16 (-I) 50 2.1 (-5) 0.31 

4a. exp(-x2) 1 x Isin x2 (I + x2) 4 -5.3 (-2) 1.16 
10 1.3 (-3) 0.97 
20 -2.6 (-7) 0.98 

f kf = 2.6272 868 (-1) 30 1.0 (-5) 1.000 

flklf= 2.7140(-1) 50 2.4(-7) 0.996 
4b. exp(-x2) xI sin25x2 (I + x2)-1 4 6.1 (-3) 0.09 

10 1.2 (-3) 0.13 
20 1.5(-4) 0.14 

f kf = 3.9687 830 (-2) 30 2.3 (-5) 0.15 

f I k if = 3.793 (-1) 50 -2.5 (-7) 0.13 

5a. exp(-x2)0(1 -x) (I + x2)-1 4 4.8(-2) 0.96 
10 -9.1 (-5) 1.003 
20 -1.0 (-5) 1.000 

fkf = f Ik If = 1.2904 687 30 5.1 (-5) 1.004 
50 -1.6 (-6) 1.002 

5b. exp(-x2)0(2 - x) (I + x2)-' 4 3.6 (-2) 0.97* 
10 1.8 (-3) 0.9986 
20 3.6 (-5) 0.9999 7 

fkf I kIf= 1.3425 7893 30 5.3 (-6) 1.0000 1 
50 3.1 (-7) 1.0000 5 

5c. exp(-x2) (I + x2)-' 4 3.7 (-2) 0.97* 
10 1.7 (-3) 0.9988* 
20 4.4 (-5) 0.9999 7* 
30 2.7 (-6) 0.9999 98* 
50 3 (-8) 1.0000 00* 

* No negative weights 

function, but in this example f has poles at + i compared with ? 2i in Example 2 
(i.e. nearer to the real axis), and the convergence is less rapid. 

Example 4. 

fe tsinyt 1+dt. 

This is a semi-infinite integral which we may treat by applying the transformation 
t = x2, as discussed in Section 6, to obtain 

|e xsinyx2 + 2 IxIdx. 00 ~ 1x 



534 WILLIAM E. SMITH, IAN H. SLOAN AND ALEX H. OPIE 

Hence we take 

k(x) =I x le-X2 sin YX2, f(x) 
1 + X2' 

Numerical results are shown for y = 1 and y = 25. Note that the absolute errors in 
the two cases are comparable, as we might expect from the error bound of Corollary 
1. 

Example 5. 

b ex2 dx. 
00 1 + X2 

If b is arbitrary, then the integral is the indefinite integral of e_x2/(1 + x2). We take 

k(x) = e-x 0(b - x), f(x) = i 
1 + x2' 

where @(x) is the unit step function. Numerical results are shown in the table for 
b = 1, 2 and cx. Note that the apparent rate of convergence is broadly similar in the 
three cases, in conformity with the theoretical result proved in Section 5 that the 
convergence is uniform with respect to b. (Note that the case b = x corresponds to 
Gauss-Hermite quadrature with f(x) = 1/(1 + x2).) 
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